

1

June 7, 2023 Zero Carbon Step Code Public Information Session

Derek de Candole, City of Victoria Rebecca Newlove, District of Saanich

Purpose

- Step Code Recap
- Zero Carbon Step Code Adopted
 Timeline
- Implementation & Compliance
- Communication

Step Code Recap

BC Energy Step Code

- Regulates energy efficiency of new buildings
- Compliance Metrics:MEUI, TEDI and ACH

BC Zero Carbon Step Code

- Regulates greenhouse gas
 (GHG) emissions of new
 buildings
- Compliance Metrics:
 kgCO2e/year and
 kgCO2e/m2/year

Previously "Carbon Pollution Standard"

Energy Step Code

Provincial Timeline

Timeline for Energy Efficiency Regulatory Requirements in the BC Building Code *Here's what the province's CleanBC plan will mean for new-construction requirements.*

Zero Carbon Step Code

2022 Engagement Summary

Adopted Timeline

Harmonized with the Provincial timeline for the BC Energy Step Code

Zero Carbon Performance	Implementation Date				
Levei	Part 9 Buildings	Part 3 MURBs* 6 storeys or fewer	Remaining Part 3 Buildings		
Measure Only		May 1, 2023			
(GHG Emission Level 1)					
Zero Carbon Performance Level	Nov 1, 2023	July 1, 2024	Nov 1, 2024		
(GHG Emission Level 4)					

• Labelling - prior to occupancy, EnerGuide Rating System Label submitted to the District of Saanich & affixed to the building (e.g. electrical panel)

Implementation

- Implementation at the Building Permit Application Stage
- Information provided to applicants at the Rezoning & Development Permit Application stage
 - As with BC Energy Step Code, it is recommended that applicants and design teams familiarize themselves with the requirements of the Zero Carbon Step Code early in the development and design process.
- No allowances for in-stream DP/RZ applications
- No allowance for Renewable Natural Gas (RNG) for compliance

Compliance Approaches to Date (regional)

Space Heating by Fuel Type

ElectricGasElectric and Gas

Common Space Heating Equipment

- Air Source Heat Pumps 57%
- Electric Baseboards: 13%
- Combination NG: 12%

Water Heating by Fuel Type

Common Hot Water Heating Equipment

- Natural Gas On-demand: 70%
- Electric tanks: 20%

Zero Carbon Compliance Approaches

Communications

- Step Code webpages
 - www.saanich.ca/stepcode
 - BC Energy Step Code | Victoria
- Zero Carbon Step Code FAQ
 - On webpage (step code, building and development)
 - In Rezoning and DP application packages
- Emails to industry associations
 - ➢ CHBA, UDI, VICA, VRBA
- Zero Carbon Step Code Webinar(s)
 - Collaboration with City of Victoria, Saanich and CRD
- Presentations to industry as requested
- More Information <u>www.energystepcode.ca</u>

Questions

Additional Slides

Zero Carbon Step Code – Building Code Requirements

Table 9.37.1.3. Greenhouse Gas Emissions Forming part of Sentence 9.37.1.3.(1)

	GHG Emission Compliance Options						
GHG EmissionMaximum GHG Emissions by House, Expressed in kg CO2e/year			Maximum GHG Emissions by House ¹				
			Maximum GHGI of the House, Expressed in kgCO _{2e} /m ² /year	Maximum GHG Emissions by House. Expressed in kqCO _{2e} /year		Reduction of GHG Emissions by Energy Source of Building Systems ²	
<u>EL-1</u>	measure only		measure only			<u>N/A</u>	
<u>EL-2</u>	<u>1050</u>	<u>or</u>	<u>6.0</u>	2400	<u>or</u>	Energy sources supplying heating systems have an emissions factor ≤ 0.011 kgCO _{2e} /kWh	
<u>EL-3</u>	<u>440</u>		<u>2.5</u>	<u>800</u>		Energy sources supplying heating and service water heating systems have an emissions factor ≤ 0.011 kqCO _{2e} /kWh	
<u>EL-4</u>	<u>265</u>		<u>1.5</u>	<u>500</u>		Energy sources supplying all building systems, including equipment and appliances, have an emissions factor ≤ 0.011 kgCO _{2e} /kWh	

Notes to Table 9.37.1.3.:

(1) Compliance for this option is demonstrated by meeting both the GHGI and the GHG emission requirements for

each house.

⁽²⁾ Redundant or back-up equipment for the systems and equipment listed in Sentence 9.36.5.4.(1). is permitted to be excluded, provided it is equipped with controls and is not required to meet the space-conditioning load of the house.

Comparison of Adoption Approaches

	Former Direction from Aug. 2022		Effective Timeline	DifferenceNotes	
	Emissions Level 3 (Low Carbon)	Emissions Level 4 (Zero Carbon)	Emissions Level 4 (Zero Carbon)		
Part 9 Residential Buildings (600m2 or smaller)	July 1, 2023	January 1, 2025	November 1, 2023	 Delay initial adoption by 6 months. No interim adoption of Low Carbon. Accelerate adoption of Zero Carbon by 14 months. 	
MURB 6 Storeys or Fewer	July 1, 2024	July 1, 2025	July 1, 2024	 No interim adoption of Low Carbon. Accelerate adoption of Zero Carbon by 12 months. 	
MURB 7+ Storeys and Commercial Buildings	July 1, 2024	July 1, 2025	November 1, 2024	 No interim adoption of Low Carbon. Accelerate adoption of Zero Carbon by 8 months. 	

New Buildings vs. Existing Buildings

- Climate Plan modelling shows achieving Zero Carbon new construction = 4% of our climate target pathway
- Each new building using fossil fuels results in GHG emissions and requirement for future retrofit

- Provincial & Vancouver costing studies summarized in Attachment 2
- Operational costs and affordability

Table 2: Incremental Construction Costs (% increase from Step 3) for Low/Zero Carbon and Higher Steps

Ruilding Type	Incremental Construction Costs (% increase from Step 3)					
Building Type	Low Carbon (at Step 3)	Zero Carbon (at Step 3)	Step 4	Step 5		
Small SFD (approx. 100-200m ²)		0.6%	1.8% - 2.8%	7.1% - 8.8%		
Medium SFD (approx. 200-300m ²)		0.6%	1.0%	2.8%		
Large SFD		0.4%	1.1%	2.9% - 3.7%		
Multi-Family (6 storey or less)	1.3%	0% - 2.2%	2.6%	N/A		

Comparison of Regular Gas vs. Electric Water Heating Systems					
Attributes	Regular Gas		Electric		
System	Standard Gas Tank	Tankless System	Standard Tank	Premium Tank	Heat Pump Hot Water System
Annual Operation Costs Source: FortisBC Home Energy Calculator	\$341	\$230	\$499	\$488	\$126 - \$191
Annual Maintenance Costs	None	\$100 Annually	None	None	\$100 Annually
25-year Cost Projection Results (Includes purchase price, operational costs, maintenance fees. Does	7 yr. Tank \$14,596 10 yr. Tank	\$13,250	7 yr. Tank \$15,689 10 yr. Tank \$14,725	\$13,500	Mid-Efficiency (UEF2.3): \$13,044
not include rebates)	\$12,775				High-Efficiency (UEF3.5): \$11,419

HOW WORRIED SHOULD INDUSTRY BE?

Spring 2023

Hurko Residence Carbon Step Code Example

What is Counted and What is Not

- **Principal Heating System**
 - Heat Pump •
 - **Gas Furnace** ۲
 - Combo system •

Supplementary Heating Equipment •

- The Gas Side of the Hybrid •
- **Electric Supplement in Heat Pump** •
- **Hot Water** •
 - Tank •
 - Boiler •
- **Redundant and Backup Systems**
 - Generator
 - Gas fire place ۲
 - Wood Fire place ۲
- **Equipment and Appliances:**
 - Cooking
 - Laundry

Not really but a bit

Gas Heating Economics

Running cost:

Gas sells for about half the price of electricity

So if your electric system is two times more efficient its cheaper to run

- Easy to reach with a standard heat pump

Install Cost:

On southern Vancouver Island heat pumps can run all year there is no need for supplementary heating.

- So why bother installing the gas system?

No need for this

Keep this

Zero Carbon Sells Island Examples

If it can be done here what is our excuse?

Part 9 Step 5 Zero Carbon Northern BC

Total Build Cost under \$400,000

Part 3 Step 4 Zero Carbon Affordable Rental Northern Nova Scotia

Total Estimated Build Cost 7.5 Million

🕼 Introba

City of Victoria & District of Saanich

Zero Carbon Step Code In Part 3 Buildings

Andy Chong, P.Eng, LEED AP Managing Principal, Victoria andy.chong@introba.com 250-418-1288 x5001

Quick Intro

- 15+ Years, Mainland to Island
- Introba Victoria Office est. 2014
- MEP, Modeling, Sustainability Services
- Focus on High-Performance Commercial + Affordable Housing
- CRD Step Code Adoption 2018
- CRD Step Code Advancement 2022
- Victoria Resident
- Dad

🕼 Introba

Local Impact: Vancouver Island Case Studies

🕼 Introba

The costs and implications of getting to zero carbon?

... depends on what you are starting with.

🕼 Introba

Stuck on Brute Force Systems Approach

Image Credit: Low Hammond Rowe Architects

🕼 Introba

Large Building Mechanical Approaches at a Glance...

Economy of Scale

1515 Douglas St

Victoria BC

Hybrid Air/Ground Source Heat Recovery Heat Pump

Introba

High Performance Commercial HVAC Equipment

Charter Telecom HQ

Langford BC

Central High-Performance HRV

Heat Recovery

Greater Flexibility in System Types

Innovative Ventilation Strategies

Reliable Controls HQ View Royal BC

Natural Ventilation

Uptown Shopping Centre Whole Foods

Saanich BC

Refrigeration Heat Recovery 750 Pandora BC Investment HQ

Victoria BC

Radiant Ceiling

But HVAC Systems Only Contribute So Much...

Higher Steps and Zero Carbon do not necessarily require more complex or expensive systems. Form and character of architecture becomes constrained at higher levels.

Thermal Energy Demand Intensity (TEDI)

MURB Case Study:

North Cowichan Seniors' Housing

- Wood-Frame Combustible Construction
- 4 Storey MURB, 52 Units
- Electric Baseboard Heating, No Cooling
- ASHP DHW + Elec Backup
- Central HRV (mid-range performance)
- Climate Zone 4
- 10% WWR, Double Glazed Vinyl

🕼 Introba

Low Hammond Rowe Architects

Thermal Energy Demand Intensity (TEDI)

MURB Case Study: North Cowichan Seniors' Housing

Thermal Energy: where does it go?

Design TEDI = 29 kWh/m²-yr

vs Part 3 Residential targets:

- Step 3 < 30 kWh/m²-yr
- Step 4 < 15 kWh/m²-yr

<u>Takeaways:</u>

- Ventilation Heating already minimized to < 1/3 of TEDI with HRVs
- Envelope Losses ~ half of TEDI → Architecture has big impact, even with WWR already constrained at ~10%
- Infiltration at 21% is a wildcard

🕼 Introba

Thermal Energy Demand Intensity (TEDI)

Commercial Case Study: TELUS Ocean

- Concrete Non-Combustible Construction
- Ground Floor Retail + 9 Storeys Office
- Fully Electric ASHP Heating, Cooling, DHW
- Central High-Performance HRVs
- 46% WWR, Triple Glazed Curtainwall
- Climate Zone 4

12 Introba

Thermal Energy Demand Intensity (TEDI)

Commercial Case Study: TELUS Ocean

Thermal Energy: where does it go?

Design TEDI = 19 kWh/m²-yr

vs Part 3 Commercial Step 3 target < 20 kWh/m²-yr (highest possible step)

Takeaways:

- Ventilation Heating already minimized to < 1/4 of TEDI with top-of-line HRVs; can't get lower
- Envelope Losses ~ half of TEDI → Architecture has big impact
- Infiltration at 18% is a wildcard especially with aggressive target

🕼 Introba

"What gets measured, gets managed."

Peter Drucker (1909-2005) American Management Guru

Energy Efficiency ≠ Carbon Emission Reduction

🕼 Introba

EUI and TEDI Optimization ≠ Climate Change Mitigation

心 Introba

TEUI, TEDI... What about GHGI?

In British Columbia,

NATURAL GAS is

17x more carbon-intensive than ELECTRICITY

Table 1.2 Emissions Factors by Fuel Type				
Fuel Type	Emissions Factor (kgCO _{2e} /kWh)			
Natural Gas	0.185			
Electricity	0.011			
District Energy System	as provided by utility ^{1,2}			

For British Columbia, DECARBONIZATION ≈ ELECTRIFICATION

TEUI x Fuel Type = Green House Gas Intensity (GHGI)

MURB Case Study: North Cowichan Seniors' Housing

- Step 4 TEUI < 100 kWh
- TEUI is also hard to hit... but not as hard as TEDI.
- Orange slices represent end-uses that could be natural gas, but have been electrified; potential swing of GHGI based on fuel source is very significant
- All other end-uses (blue slices) are already electric

TEUI x Fuel Type = Green House Gas Intensity (GHGI)

Commercial Case Study: TELUS Ocean

- Step 3 TEUI < 101 kWh (blended)
- TEUI is also hard to hit... but not as hard as TEDI.
- Orange slices represent end-uses that *could* be natural gas, but have been electrified; compared with residential projects, GHGI swing less significant
- All other end-uses (blue slices) are already electric

TEUI x Fuel Type = Green House Gas Intensity (GHGI)

Case Study Summary

Low Hammond Rowe Architects

•

Diamond Schmitt Architects

Introba

North Cowichan Senior's Housing (MURBs)

- Space Heating + DHW account for 54% of total energy demand
- TEDI is challenging even when architectural form is already "well behaved"
- Passes TEUI target by a mile
- Max GHG Impact → Decarbonize Heat + DHW Systems

TELUS Ocean (Commercial + Mixed-Use)

- Space Heating + DHW = only ~7% of total energy demand
- HVAC systems already driven by cooling anyway (which was already electric)
- Lighting + Plugs are much more significant factor (65% of TEUI); majority of building load is already electric
- Max GHG Impact \rightarrow Electrify, Max Heat Recovery, Optimize Envelope

Arch + Mech Integrated Design \rightarrow Decarbonization Hierarchy

- 3. For what's left use renewable sources and/or offset
- 2. Satisfy the remaining load with the smallest, most-efficient, and lowest-carbon-intensity practical
- heat recovery, heat pumps, innovative equipment
- 1. Reduce base demand through conservation measures
- Reduce waste, incorporate passive design, optimize envelope, demand control measures

🕼 Introba

We Have to Get Good at DWH without Gas, Fast... CO2 HP?

🕼 Introba

Energy Model is a Design Tool (Not just a Compliance Check)

• Test performance of options before committing to full design and/or capital costs...

"Are we going to make it?"

- Explore and Refine Options, Cost/Benefit, and avoid Brute Force Overdesign
- ... or risk not making it to your destination.

Bottom Line Takeaways

- 1. Market is Ready! Many Mech Solutions but they only go so far.
- 2. Building Form & Architecture Play Critical Role at Higher Steps; Conservation First
- 3. Fuel Source is Critical to Carbon Emission Reduction; Emphasize and Plan for Electric Options
- 4. MURB projects must confront how to do DHW without gas
- 5. Energy Modeling as a Design Tool (not just a compliance check)

