Four-chamber Nursery House

Materials (makes two houses) • Diagrams on pages $12 \& 13$
$1 / 2$ sheet (4' $\times 4$ 4') $/ 1 / 2 \mathrm{AC}, \mathrm{BC}$ or T1-11 (outdoor grade) plywood $1 / 2$ sheet (4' x 4') $3^{3 / 1} \mathrm{AC}$ or BC (outdoor grade) plywood
Two pieces $1^{\prime \prime} \times 6^{\prime \prime}\left(3^{\prime \prime} \times 51 /{ }^{\prime \prime}\right.$ finished) x 8^{\prime} pine or cedar
One lb. coated deck or exterior-grade screws, $1 \%{ }^{\prime \prime}$
20 to 25 coated deck or exterior-grade screws, $11 / 4$
20 to 25 exterior-grade screws, $1^{1 "}$
One quart dark, water-based stain, exterior grade
One quart water-based primer, exterior grade
Two quarts flat water-based paint or stain, exterior grade
One tube paintable latex caulk
Black asphalt shingles or galvanized metal
12 to 20 roofing nails, $7 /{ }^{7}$

Recommended tools

Table saw or circular saw Variable-speed reversing drill Screwdriver bit for drill
Tape measure or yardstick Caulking gun $11 / 2^{\prime \prime}$ hole saw or spade bit

Construction

1. Measure, mark and cut out all wood according to the sawing diagrams on pages 12 and 13.
2. Roughen interior and landing surfaces by cutting horizontal grooves with sharp object or saw. Space grooves $1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ apart, cutting $1 / 32^{\prime \prime}$ to $1 / 6^{\prime \prime}$ deep.
3. Apply two coats of dark, water-based stain to interior surfaces. Do not use paint, as it will fill grooves.
4. Attach side pieces to back, caulking first. Use $15 / 8$ screws. Make sure top angles match.
5. Attach $5^{\prime \prime}$ and $10^{\prime \prime}$ spacers to inside corners per drawings on page 12 . Use 1 " screws. Roost chamber spacing will be $3 / 4$ (front to back). Do not block side vents.
6. Place first roosting partition on spacers even with bottom edge of roof. Place $20^{\prime \prime}$ spacers on partition and screw to first spacers (through partition), using $15 / 8$ screws.
7. Repeat step 6 for remaining spacers and partitions.
8. Attach front to sides, top piece first (caulk seams). Be sure top angles match (sand if necessary). Leave $1 / 2 /{ }^{\prime \prime}$ vent space between top and bottom front pieces. A bar clamp may be useful if sides have flared out during construction.
9. Attach roof supports to the top inside of front and back pieces with 1 " screws. Don't let screws protrude into roosting chambers.
10. Caulk around all top surfaces, sanding first if necessary to ensure good fit with roof.
11. Attach roof to sides and roof supports with $1 \frac{1}{4}$ screws. Caulk around roof and side joints to further guard against leaks and drafts. Don't let screws protrude into roosting chambers.
12. Paint or stain exterior three times (use primer for first coat).
13. Cover roof with shingles or galvanized metal.

Optional modifications

1. These nursery-house dimensions were chosen to permit construction of two bat houses per halfsheet of plywood. Increasing house width to 24 " or more or adding partitions benefits bats and attracts larger colonies. Additional spacers are required to prevent warping of roost partitions for houses more than 24 " wide.
2. Taller bat houses provide improved temperature gradients and may be especially useful in climates where daily temperatures fluctuate widely. Bat houses 3^{\prime} or taller should have the horizontal vent slot 12 " from the bottom of the roosting chambers.
3. Two bat houses can be placed back-to-back mounted on poles. Before assembly, a horizontal $3 / 4^{\prime \prime}$ slot should be cut in the back of each house about 10 " from the bottom edge of the back piece to permit movement of bats between houses. Two pieces of wood, $1^{\prime \prime} \times 4^{\prime \prime} \times 10^{3 / 4}$, screwed horizontally to each side, will join the two boxes. Leave a $3 / 4^{\prime \prime}$ space between the two houses, and roughen the wood surfaces or cover the back of each with plastic mesh. One $2^{\prime \prime} \times 4^{\prime \prime} \times 40^{\prime \prime}$ vertical piece, attached to each side, over the horizontal pieces, blocks light but allows bats and air to enter. Use a $2 " \times 6 "$ vertical piece if securing houses with U bolts to metal poles. A galvanized metal roof that covers both houses protects them and helps prevent overheating. Eaves should extend about $3^{\prime \prime}$ in front in southern areas and about $11 /{ }^{\prime \prime}$ in the north.
4. Ventilation may not be necessary in cold climates. In that case, the front of the bat house should be a single, 23 "-long piece. Far-northern bat houses may also benefit from a partial bottom to help retain heat. Slope the sides and bottom at an angle of 45° or greater to reduce guano build-up. Leave a $3 / 4{ }^{\prime \prime}$ entry gap at the back and be sure the bottom does not interfere with access to the front crevices. A hinged bottom is required to permit annual cleaning.
5. Durable plastic mesh can be substituted for roughening. Attach mesh to backboard, landing area and one side of each partition after staining interior, but prior to assembly. Use $1 / 8 "-$ or $1 / 4$ "-inch HDPE plastic mesh [such as Internet product \#1672 (1-800-328-8456; www.internetmesh.net)] and attach every two inches with $5 / 66^{\prime \prime}$ Monel ${ }^{\circledR}$ or stainless steel staples.
6. Make partitions removable by attaching small cleats with thumbscrews to the bottom of side pieces for support. Spacer strips are unnecessary if grooves for partitions are cut in the side pieces with a router or dado saw blade.

Bat Conservation International

Two-chamber Rocket Box

Materials (makes one house)

$2^{\prime \prime}$ diameter ($2 \%^{3 \prime \prime}$ outside diameter) steel pole, 20' long Two $1^{\prime \prime} \times 4^{\prime \prime}\left(3 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}\right.$ finished) $\times 8^{\prime}$ boards* Two $1^{\prime \prime} \times 8^{\prime \prime}\left(3 /{ }^{\prime \prime} \times 71 /{ }^{\prime \prime}\right.$ finished) $\times 8^{\prime}$ boards*

Two $1^{\prime \prime} \times 10^{\prime \prime}\left(3^{\prime \prime} \times 91 / 4^{\prime \prime}\right.$ finished) x 6^{\prime} boards* $24^{\prime \prime} \times 24^{\prime \prime} \times 3 / 4$ " piece of AC exterior plywood Box of 100 exterior-grade screws, $15 /{ }^{\prime \prime}$ Box of 100 exterior-grade screws, $11 /{ }^{\prime \prime}$ 16 to 32 exterior-grade screws, $2^{\prime \prime}$

5. Attach spacer blocks to pole sleeve as shown (four per side) using two $1 \frac{1}{4}$ " screws per block. Bottom spacer blocks are 9 "up from bottom of pole sleeve. Top spacer blocks are $5^{\prime \prime}$ from top. Alternate spacer blocks on left and right sides, $5^{\prime \prime}$ apart.
6. Assemble four inner shell boards into a hollow, square box as in step 4.
7. Slide pole sleeve into inner shell until top edges are flush. Bat passage holes will be towards the top. Mark location of spacer blocks. Secure inner shell to pole sleeve with 2" screws through the spacer blocks to ensure no screws protrude into roosting chambers. Pre-drill holes first to avoid splitting spacer blocks (countersinking holes may also help).
8. Attach spacer blocks (4 per side) to inner shell as shown, using two $1 \frac{1}{4}$ " screws per block. Bottom spacer blocks are $10^{\prime \prime}$ up from the bottom edge of the inner shell. Top spacers are $4^{\prime \prime}$ from top. Alternate spacers left and right sides, $4^{\prime \prime}$ apart.
9. Assemble four outer-shell boards into a hollow, square box as in step 4. Vent slots are on opposing sides and oriented towards the bottom.
10. Slide finished outer shell over inner shell, so that $6^{\prime \prime}$ of inner shell protrudes below outer shell. Mark locations of spacer blocks.
Secure outer shell to inner shell as in step 7 (pre-drill holes first). Ensure that no screws protrude into the roosting chambers.
11. Caulking first, attach inner roof to box with $1 \frac{1}{4}$ " screws. Carefully drive screws into top edges of shells to prevent screws from entering roosting chambers.
12. Center and attach outer roof to inner roof with $1 \frac{1}{4}$ " screws, caulking first.
13. Paint or stain exterior three times (use primer for first coat). Cover roof with shingles or dark galvanized metal.
14. Slide completed rocket box over pole. One inch up from the bottom edge of pole sleeve, drill a $1 / 4$ " hole all the way through pole and sleeve. Rotate box and pole 90° and drill another $1 / 4^{\prime \prime}$ hole, 2 inches from the bottom, through pole and sleeve. Secure box to pole with two $41 /{ }^{\prime \prime}$ bolts, washers and nuts. Orient vent slots north and south during installation.

Optional modifications

to the rocket box

1. For extra mounting height, insert a $41 / 2^{\prime \prime}$ bolt and nut about halfway up through pole sleeve after completing step 5.
2. For extra heat-holding capacity, create a compartment in upper half of pole sleeve with a $21 / 2$ "-square piece of leftover plywood. Fill upper half of sleeve with sand, gravel or dirt, and seal with another piece of plywood flush with top.
3. In warmer climates, a larger outer roof with more overhang can be used for additional shading.

2' x 2' x 3/4" AC plywood

FIGURE 7 Two-chamber
Rocket Box
Sawing
Diagram

Outer shell
Outer shell
2 boards @

Inner shell

$$
2 \text { boards @ }
$$

Pole sleeve 2 boards @

$$
1^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime}
$$ $1^{\prime \prime \times 4 " \times 8}$

